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The Ground State for Sticky Disks 
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It is proven that the ground state of the two-dimensional sticky potential is 
the triangular lattice. 
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1. I N T R O D U C T I O N  A N D  S T A T E M E N T  OF R E S U L T S  

It is one of the classical unsolved problems in statistical and solid state 
physics to show why real matter is in crystalline form at low temperatureJ 1~ 
The full quantum problem is well beyond known techniques, so, as in most 
discussions of such matters, we consider the problem in the framework of 
classical mechanics with phenomenological potentials of the Lennard-Jones 
type. For such a potential Vwe want to show that the configuration of particle 
positions {rj} that minimizes the energy 

E = �89 ~. V(lr ,  - rj[) 
t,y 
i r  

(i.e., the "zero-temperature state" or "ground state") is roughly periodic, 
and becomes a perfect lattice as the number of particles grows beyond bound. 
We call this the "ground state problem" (for the potential V), and note that 
in some sense it is the attempt to determine (one of) the origins of spatial 
symmetry in matter. 

In one space dimension the ground state problem is trivial for potentials 
of sufficiently short range. To be specific: if, because of a hard core or a priori 
estimates, one can show that in any ground state for a potential each particle 
can only interact directly with its nearest neighbors, then, under very mild 
further conditions on the potential, the ground state is unique (up to transla- 
tion) and consists of evenly spaced particles. The ground state problem for 
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such a potential is trivial (in one dimension) because one can minimize E 
locally, i.e., for each pair of particles separately, and join the results together. 
The ground state problem is much harder for longer range potentials and/or 
in higher dimensions. 

For longer range potentials the ground state problem is clearly global 
(or "many-body")  in an essential way. The known results in one dimension 
are the following. For the Lennard-Jones potential V(r) = r -~2 - r 6 it has 
been shown (2~ that each finite system of. particles has a unique ground state 
(up to translation) which becomes evenly spaced as the number of particles 
grows beyond bound. It is further shown in Ref. 3, again in one dimension, 
that the qualitative property of having periodic ground states can be destroyed 
by arbitrarily small perturbations of a potential. There are also interesting 
related results in Refs. 4 and 5 for one-dimensional systems of infinitely many 
particles. 

In two or three dimensions the ground state problem is essentially global 
or many-body even for very short-range potentials. Consider, for example, 
the "sticky potential":  

r +oe, 0 ~< r < 1 

V(r) = ~ - 1 ,  r = 1 (1) 

L 0, r > l  

If we want to minimize E for this potential we can imagine an impenetrable 
sphere centered at each particle, and the problem consists in showing that 
those configurations of n spheres in which the maximum possible number are 
touching (n fixed) are periodic. 

In two dimensions each sphere (or, more properly, disk) can touch at 
most six others, and in three dimensions at most twelve others. (6) It is easy 
to construct periodic finite arrays where all " in ter ior"  spheres touch the 
maximum possible number of others, but of course each boundary sphere 
touches fewer than the maximum. It is not hard to check that if one starts by 
constructing a minimum size boundary (by having the boundary spheres 
approximate a spherical shell) and then works inward, the spheres will not 
mesh correctly in the middle--but  of course this could still conceivably give a 
lower value of E than obtained by insisting that all the interior spheres touch 
maximally many neighbors. (Note that in one dimension this conflict dis- 
appears since one can easily arrange for a minimal size boundary, namely two, 
without implication for the interior.) 

It is thus by no means clear whether or not the ground states for the 
sticky potential are periodic (i.e., "crystalline") and the above considerations 
illustrate the essentially global nature of the ground state problem in two and 
three dimensions. 
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In this paper we will give the first derivation of the existence of a crystal 
in two dimensions--for the sticky potential defined in (1). 

2. N O T A T I O N  

In accordance with the previous section, we are concerned with con- 
figurations C of unit-diameter impenetrable disks in R 2. Each pair of disks 
that is touching determines a "bond , "  which we represent by the closed, 
unit-length line segment between the centers of the pair. By Cg we denote the 
set whose elements are the bonds of C, while Q,  the "g r ap h "  of C, denotes 
the set of all points contained in any of the bonds. The cardinality of Cg is 
denoted C~. The set of "vert ices" of C, i.e., the centers of the disks, is denoted 
cv. 

For each integer n > 1, B(n) denotes the supremum of Cb over all C 
containing n disks. It has been shown by Harborth ~7~ that 

B ( n )  = [3n - ( 12~  - 3) ~ ]  

where [x] denotes the greatest integer less than or equal to the real number x. 
(Note: a variable represented by a lower case letter is assumed to vary 
through Z unless otherwise indicated.) A configuration C of n disks will be 
called "maximal"  if Cb = B(n).  We will reproduce Harborth's proof  (which 
yields the ground state energy) in order to extend it to obtain properties of the 
maximal configurations (i.e., ground states). Specifically, we will show that 
the particles in a ground state lie on the vertices of a "triangular lattice," i.e., 
the points in the complex plane of the form m + n exp(br/3), m and n in Z. 

3. A C O N S T R U C T I O N  

We begin with the computation of Cb for a special class of configurations 
which will prove to be maximal. 

Assumes > 1,0 ~< k ~< 5, and0  ~<j~<saref ixed.  Le tn  = 3s 2 + 3 s +  
1 + (s + 1)k + j, so that n can be thought of as the number of disks in the 
configuration C obtained by nestling more disks around the boundary of a 
"close-packed hexagon of disks with s + 1 disks on each side" [i.e., the 
hexagon has centers at the points 

Hs = {d~m(rn  + nei~la)lrn >1 O, n > O, m + n <~ s, 0 <~ p <~ 5} 

in the complex plane]. Specifically, 

Cv = [ts u { e ~ m ( m  + ne~la)lrn > O, n >>. 1, m + n = s + 1 ,0  <~ r ~ k - 1} 

W {e~k~m(m + ne~/a)lrn >~ O, 1 ~ n <~ j ,  m + n = s + 1} 
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I t  is easy to check that C~ = H(n), where 

(%2 + 3s 

H(n) = gt.9s 2 + 3s + (3s + 2 ) k -  1 + 3j 

and that 

H(n) = [3n - (12n - 3) ls2] 

Raymond C. Heitmann and Charles Radin 

i f j  = k = 0 

i f j  + k r 0 

(2) 

4. PROPERTIES OF THE G R O U N D  STATES OF THE 
S T I C K Y  POTENTIAL 

T h e o r e m .  (1) B(n) = H(n) = [3n - (12n - 3) 1/2] (Harborth(7)). 
(2) For  any maximal configuration C of n disks, n > 3: (a) C~ has a 

simple closed polygonal boundary with vertices on a triangular lattice and C~ 
consists of  all the lattice points inside and on this polygon. (b) Cg contains 
exactly - [ 3  - (12n - 3)  1/2] boundary vertices. 

Proof. The cases n = 1 and 2 for part  (1) are trivial so we assume n > 3. 
Let C be a maximal configuration of n disks. Clearly each disk in C touches 
at least two others, so Cg decomposes R 2 into elementary polygons with unit 
sides, where "e lementary"  means that no element of  C~ is contained in the 
polygon's interior. F rom the maximal property of C it follows that Cg is a 
connected set and furthermore that this property would persist in the con- 
figuration obtained by removing any one disk from C. Therefore C~ has a 
simple closed polygonal boundary, eCg _~ Cg, and we denote by a the number 
of  boundary vertices, i.e., the cardinality of C~ c~ eC~. 

Iffi- is the number of  elementary j-gons in C~ and f = ~sf~, then by 
Euler's formula 

n + f =  Cb + 1 (3) 

I f  the number of all (unit-length) sides of all f e l emen ta ry  j-gons are added, 
the boundary sides would be counted once and the interior sides twice, so 

a + 2(Cb--  a) = 3fa + 4f~ + . . . / >  3f  

Multiplying (3) by 3, this inequality yields 

n -  a /> Cb + 3 - -  2n (4) 

or equivalently 

Cb ~< 3 n - - a - -  3 (7) 

Note that (4) and (4) are equalities if and only if there are only triangles in 
ca. 
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By a "ver tex  of  type j "  we mean a point  in Cv contained in exactly j 
bonds,  and we let kj be the number  of  vertices of  t y p e j  in aCg. Then 

a = k2 + ka + k4 + k5 (5) 

Since every angle between intersecting bonds  is at least ,7/3, the interior angle 
of  0Cg at a vertex of  type j is at least ( j  - 1)rr/3, so that  (from a s tandard 
formula) 3/rr times the sum of  all interior angles of  ~Cg is 

3 a -  6 /> k2 + 2ka + 3k~ + 4k5 (6) 

Note  that  (6) is an equality if and only if every interior angle of  ~Cg is 
( j -  1)~r/3. 

I f  the boundary  disks are removed f rom C, leaving C '  with Co' > 0 
bonds,  we have 

Co' > C o -  a -  (ka + 2k~ + 3ka) 

and f rom (5) and (6) we get 

Co_< Q '  + k 2  + 2 k a  + 3k4 + 4 k 5  

and 

Cb ~< C~' + 3 a -  6 (7) 

Assume for induction that  B ( t )  <<. 3 t  - (12t - 3) 1/2 for 0 < t < n. I r a  = n, 
it follows f rom (4) that  Co ~< 3n - (12n - 3) z/2, so until we prove (9) we 
will assume a r n. Then since Co = B ( n )  by assumption, (7) gives 

B ( n )  <~ Co' + 3a  - 6 <~ B ( n  - a)  + 3a  - 6 

F r o m  the induction, then, 

B ( n )  ~< 3n - 6 - {12(n - a) - 3} 1/2 

Note  for future reference that  we get a strict inequality here if Co' < B ( n  - a)  

or if some interior angle of  ~Cg is > ( j  - 1)rr/3. Now, using (4), 

B ( n )  ~ 3n - 6 - (12{B(n) + 3 - 2n} - 3) 1/2 

o r  

Therefore 

o r  

B ( n )  ~< 3n - 6 - {12B(n) + 33 - 24n} t;2 

(B(n) - 3n + 6} 2 >/ 12B(n) + 33 - 24n 

(8) 

B ~ ( n )  - 6 n B ( n )  + 9 n  2 - 12n + 3 > 0 

Let P ( b )  = b 2 - 6nb  + 9n  2 - 12n + 3. Then P ( b )  has roots at b = 3n _+ 
( 1 2 n -  3) 1/2, and is positive for b ~< 3 n -  ( 1 2 n -  3) 1/2 and b >/ 3n + 
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(12n - 3 )  1/2.  Since clearly B(n) < 3n, [B(n) = 3n would require all disks to 
touch six others, including those on the boundary] ,  we have 

B(n) <~ 3n - (12n - 3) 1/2 

so with (2) we have 

B(n) = H(n)  = [3n - (12n - 3) 1/2] (9) 

which is par t  (1) of  the Theorem.  
The essence of  our  me thod  for  proving pa r t  (2) is that  inequalities (4) 

and (6) cannot  bo th  be strict; if they were, one could obtain (8), and then 
(9), with B(n) replaced by {B(n) + 1}, which of  course would be false. 

Assume n is the smallest  nonnegat ive integer for  which there exists a 
maximal  configurat ion C such t h a t f j  # 0 for  s o m e j / >  4 (this will lead to a 
contradict ion).  F r o m  the assumpt ion  t h a t f j  r 0 for  s o m e j / >  4, we have, as 
in the p r o o f  of  (2~), 

(C~ + 1) ~< 3 n -  a -  3 (4') 

or equivalently 

n -  a >/ (Cb + 1 ) - -  2n + 3 (4') 

Since by assumpt ion  there is a nontriangle in Cg, either it touches ~Cg or it 
lies in Cg'. In the fo rmer  case we get a strict inequality f rom (6), which leads 
to 

(C~ + 1) ~< C0' + 3a - 6 (7') 

and then, using Cb' <<. B(n - a), to 

(C0 + 1) ~< 3n - 6 - {12(Cb + 1) + 33 -- 24n} 1/2 (8') 

I f  the latter were the case, then by the minimali ty  of  n we have 
Cb' ~ B(n - a) - 1, and again we have (8'). So in any case we have (8'). But 
then just  as (8) implies (9), so (8') implies 

(C0 + 1) ~< 3n - (lZn - 3) ~/2 

which is  in contradict ion with the maximal i ty  of  C and which thus proves  
par t  (2a) of  the Theorem.  And  since now (4) is seen to be an equality, pa r t  
(2b) of  the Theorem is also proven,  and our  p roo f  is complete.  

Remark.  Par t  (2) of  the Theo rem implies tha t  as n is made larger, the 
ground state fills out  all of  the tr iangular  lattice. 
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